

Closed *EP* and Hypo-*EP* Operators on Hilbert Spaces

P. Sam Johnson

NITK, Surathkal, India

Notations

operators	linear operators
spaces	Hilbert spaces
A*	adjoint of A
A^{\dagger}	Moore-Penrose inverse of A
$\mathcal{R}(A)$	range of A
$\mathcal{N}(A)$	nullspace of A
$\mathcal{B}(\mathcal{H})$	all bounded operators from ${\mathcal H}$ to itself
$\mathcal{C}(\mathcal{H})$	all closed densely defined operators from $\ensuremath{\mathcal{H}}$ to itself

In 1950, Hans Schwerdtfeger¹ defined a new class of matrices called *EP* matrices.

Definition 1.

A square matrix A of order n with elements from the complex field $\mathbb C$ is called an EP matrix if

$$\sum_{i=1}^{n} \alpha_i A_{(i)} = 0 \text{ if and only if } \sum_{i=1}^{n} \overline{\alpha_i} A^{(i)} = 0$$

where $A_{(i)}$ is the *i*th row of A and $A^{(i)}$ is the *i*th column of A.

¹Hans Schwerdtfeger, *Introduction to Linear Algebra and the Theory of Matrices*, P. Noordhoff, Groningen, 1950.

P. Sam Johnson

Closed EP and Hypo-EP Operators on Hilbert Spaces

Pearl (1966) : A is EP iff $AA^{\dagger} = A^{\dagger}A$.

Campbell and Meyer (1975) : Let $A \in \mathcal{B}(\mathcal{H})$ have a closed range. Then A is EP iff $AA^{\dagger} = A^{\dagger}A$.

Itoh (2005) : A is hypo-EP if $A^{\dagger}A - AA^{\dagger} \ge 0$.

Meenakshi, Baksalary (EP matrices);

```
Djordjevic (EP operators);
```

Patel and Shekhawat ; Johnson and Vinoth (hypo-EP operators).

An operator on a Hilbert space \mathcal{H} is a bounded operator if and only if it is continuous. It follows that unbounded operators are discontinuous (everywhere).

Definition 2.

Let A be an operator from a Hilbert space \mathcal{H} with domain $\mathcal{D}(A)$ to a Hilbert space \mathcal{K} . If the graph of A defined by

$$\mathcal{G}(A) = \{(x, Ax) : x \in \mathcal{D}(A)\}$$

is closed in $\mathcal{H} \times \mathcal{K}$, then A is called a closed operator.

We consider densely defined closed operators from ${\mathcal H}$ to itself.

 $\mathcal{D}(A) \cap \mathcal{N}(A)^{\perp}$, the carrier of A and it is denoted by C(A). We note that, for any $A \in \mathcal{C}(\mathcal{H})$, the closure of C(A) is $\mathcal{N}(A)^{\perp}$.

Closed Operators

Theorem 3 (Ben-Israel, 2003).

Let $A \in C(\mathcal{H})$. Then the following are true.

1.
$$\mathcal{N}(A) = \mathcal{R}(A^*)^{\perp}$$
, $\mathcal{N}(A^*A) = \mathcal{N}(A)$.
2. $\mathcal{N}(A^*) = \mathcal{R}(A)^{\perp}$, $\mathcal{N}(AA^*) = \mathcal{N}(A^*)$.
3. $\overline{\mathcal{R}(A)} = \mathcal{N}(A^*)^{\perp}$, $\overline{\mathcal{R}(A)} = \overline{\mathcal{R}(AA^*)}$.
4. $\overline{\mathcal{R}(A^*)} = \mathcal{N}(A)^{\perp}$, $\overline{\mathcal{R}(A^*)} = \overline{\mathcal{R}(A^*A)}$.

The Moore-Penrose inverse A^{\dagger} for a closed densely defined operator A can be defined with $\mathcal{D}(A^{\dagger}) := \mathcal{R}(A) \oplus \mathcal{R}(A)^{\perp}$ and taking values in C(A) by associating each $y \in \mathcal{D}(A^{\dagger})$ to the unique $A^{\dagger}y$ such that $AA^{\dagger}y = Qy$, where Q is the orthogonal projection of \mathcal{H} onto $\overline{\mathcal{R}(A)}$. It can be seen that $\mathcal{N}(A^{\dagger}) = \mathcal{R}(A)^{\perp}$ and

$$A^{\dagger}Ax = Px$$
 for $x \in \mathcal{D}(A)$,

where *P* is the orthogonal projection of \mathcal{H} onto $\overline{C(A)}$. Again, A^{\dagger} is closed and densely defined operator².

²M. Thamban Nair, *Linear Operator Equations: Approximations and Regularization*, World Scientific, First Edition, 2009.

P. Sam Johnson

Closed EP and Hypo-EP Operators on Hilbert Spaces

Closed EP **Operators**

Definition 4.

Let A be a densely defined closed operator on a Hilbert space \mathcal{H} . The operator A is said to be an EP operator if A has a closed range and $\mathcal{R}(A) = \mathcal{R}(A^*)$.

Example 5.

Define A on ℓ_2 by $A(x_1, x_2, x_3, ...) = (x_1, 2x_2, 3x_3, ...)$ with domain $\mathcal{D}(A) = \{(x_1, x_2, x_3, ...) \in \ell_2 : \sum_{n=1}^{\infty} |nx_n|^2 < \infty\}$. Then $A \in C(\mathcal{H})$ and it is an EP operator.

Example 6.

Define A on ℓ_2 by $A(x_1, x_2, x_3, ...) = (x_1, 2x_2, \frac{x_3}{3}, 4x_4, \frac{x_5}{5}, ...)$ with domain $\mathcal{D}(A) = \{(x_1, x_2, x_3, ...) \in \ell_2 : (x_1, 2x_2, \frac{x_3}{3}, 4x_4, \frac{x_5}{5}, ...) \in \ell_2\}.$ Then A is not an EP operator.

Closed EP **Operators**

Theorem 7.

Let $A \in C(\mathcal{H})$ with a closed range. Then the following are equivalent:

1. A is EP ; 2. $AA^{\dagger} = A^{\dagger}A \text{ on } \mathcal{D}(A)$; 3. $\mathcal{N}(A) = \mathcal{N}(A^{\dagger})$; 4. $\mathcal{N}(A) = \mathcal{N}(A^{*})$; 5. $\mathcal{N}(A)^{\perp} = \mathcal{R}(A)$; 6. $\overline{C(A)} = \mathcal{R}(A)$; 7. $\mathcal{H} = \mathcal{R}(A) \oplus \mathcal{N}(A).$

Closed Hypo-*EP* **Operators**

Remark 8.

It is proved that that $AA^{\dagger} = A^{\dagger}A$ on $\mathcal{D}(A)$ if and only if $\mathcal{N}(A) = \mathcal{N}(A^*)$. If we drop the assumption that $\mathcal{R}(A)$ is closed, we get that $AA^{\dagger} \subseteq A^{\dagger}A$ if and only if $\mathcal{N}(A) = \mathcal{N}(A^*)$ and $\mathcal{D}(A^{\dagger}) \subseteq \mathcal{D}(A)$.

Similarly, we can prove that $A^{\dagger}A \subseteq AA^{\dagger}$ if and only if $\mathcal{N}(A) = \mathcal{N}(A^*)$ and $\mathcal{D}(A) \subseteq \mathcal{D}(A^{\dagger})$.

Closed Hypo-*EP* **Operators**

Definition 9.

Let A be a densely defined closed operator on a Hilbert space \mathcal{H} . The operator A is said to be a hypo-EP operator if A has a closed range and $\mathcal{R}(A) \subseteq \mathcal{R}(A^*)$.

Example 10.

Define A on ℓ_2 by

$$A(x_1, x_2, x_3, \ldots) = (0, x_1, 2x_2, 3x_3, \ldots)$$

with $\mathcal{D}(A) = \{(x_1, x_2, \ldots) \in \mathcal{H} : \sum_{n=1}^{\infty} |nx_n|^2 < \infty\}$. Then A is hypo-EP but not EP.

Closed Hypo-*EP* **Operators**

Theorem 11.

Let $A \in C(\mathcal{H})$. Then each of the following statements implies the next statement:

1. A is hypo-EP ;

2.
$$A(A^{\dagger})^2 A = A A^{\dagger}$$
 on $\mathcal{D}(A)$;

- 3. $AA^{\dagger} \leq A^{\dagger}A$ on $\mathcal{D}(A)$;
- 4. $||AA^{\dagger}x|| \leq ||A^{\dagger}Ax||$ for all $x \in \mathcal{D}(A)$.

Remark 12.

All are equivalent if $\mathcal{R}(A) \subseteq \mathcal{D}(A)$.

A perturbation result

Theorem 13.

Let $A \in C(\mathcal{H})$ be an EP operator. Let $B \in \mathcal{B}(\mathcal{H})$ be such that $||B|| ||A^{\dagger}|| < 1$, $BA^{\dagger}A = B|_{\mathcal{D}(A)}$ and $AA^{\dagger}B = B$. Then A + B is EP.

Present Work :

Restriction ; Sum ; Product ; Limit ; Perturbation ; Fuglede-Putnam Type Theorems and so on.

Main References

- M. Thamban Nair, Functional Analysis: A First Course, Prentice-Hall of India, second edition, 2021.
- Hans Schwerdtfeger, Introduction to Linear Algebra and the Theory of Matrices, P. Noordhoff, Groningen, 1950.
- M. H. Pearl, On generalized inverses of matrices, Proc. Cambridge Philos. Soc., 62:673–677, 1966.
- Stephen L. Campbell and Carl D. Meyer, *EP operators and generalized inverses*, Canad. Math. Bull., 18(3):327–333, 1975.
- 5. Masuo Itoh, On some EP operators, Nihonkai Math. J., 16(1):49-56, 2005.